Preparation of Arsinocobaloximes and the Crystal Structure of $\left[\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{As}(\mathrm{O}) \mathrm{Co}^{\mathrm{III}}(\mathrm{dmgH})(\mathrm{dmg})\right]_{2} \mathrm{Co}^{\mathrm{II}}$

William R. Cullen,*la David Dolphin, ${ }^{\text {1a }}$ Frederick W. B. Einstein, ${ }^{\text {1b }}$
Lynn M. Mihichuk, ${ }^{\text {la,c }}$ and Anthony C. Willis ${ }^{\text {lb }}$
Contribution from the Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1W5, and Simon Fraser University,
Burnaby, British Columbia, Canada V5A 1S6. Received November 27, 1978

Abstract

The $\mathrm{Co}(\mathrm{l})$ cobaloxime $\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3} \mathrm{PCo}(\mathrm{dmgH})_{2}$ reacts with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsCl},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Asl}^{2}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{AsCl}_{2},\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{CH}_{3}\right) \mathrm{AsCl}$, and $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{AsCl}$ to give solutions of the air-sensitive species $\mathrm{R}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{AsCo}(\mathrm{dmgH})_{2} \mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}$. When $\mathrm{R}^{\prime}=\mathrm{R}^{\prime \prime}=\mathrm{CH}_{3}$ and R^{\prime} $=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{\prime \prime}=\mathrm{Cl}$, the ultimate product is $\left\{\left[\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3} \mathrm{P}\right]_{2} \mathrm{Co}(\mathrm{dmgH})_{2}\right\}^{+} \mathrm{X}^{-}(\mathrm{X}=\mathrm{Cl}, \mathrm{I})$. When $\mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5}$ and $\mathrm{R}^{\prime \prime}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{CH}_{3}$, a red solid can be isolated of formula $\left[\mathrm{R}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{As}(\mathrm{O}) \mathrm{Co}\left(\mathrm{dmg}_{2} \mathrm{H}\right) \mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\right]_{2} \mathrm{Co}$ which is hydrated $\left(2 \mathrm{H}_{2} \mathrm{O}\right)$ in the case $\mathrm{R}^{\prime}=$ $\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{\prime \prime}=\mathrm{CH}_{3}$. The crystal structure of a hydrated complex (final $R_{1}=0.102$) consists of two $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{CH}_{3}\right)$ AsO$\mathrm{Co}\left(\mathrm{dmg}_{2} \mathrm{H}\right) \mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}$ units which are bonded in a fac configuration to a central $\mathrm{Co}(\mathrm{II})$ atom through the arsenyl O and two adjacent dmg O atoms. The average $\mathrm{Co}(\mathrm{II})-\mathrm{O}$ bond length (six bonds) is $2.08 \AA$. The two Co (III) atoms are axially bound to $\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3} \mathrm{P}$ and $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{CH}_{3}\right) \mathrm{As}(\mathrm{O})$ units. The molecule has approximate (noncrystallographic) twofold symmetry and is dissymmetric. Solutions of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsCo}(\mathrm{dmgH})_{2} \mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}$ react with $\mathrm{CH}_{3} \mathrm{l}$ and $\mathrm{CH}_{3} \mathrm{Co}(\mathrm{dmgH})_{2} \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ to give $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{As}$ and methyl-cobalt complexes. The CH_{3} group of $\mathrm{CH}_{3} \mathrm{Co}(\mathrm{dmgH})_{2} \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ is not transferred to arsenic on reaction with AsH_{3} $\left(\mathrm{CH}_{4}\right.$ is evolved) or $\mathrm{As}_{3}\left(\left[\mathrm{CH}_{3} \mathrm{Co}\left(\mathrm{dmgH}_{2}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right]^{2+} 2 \mathrm{X}^{-}, \mathrm{X}=\mathrm{Cl}\right.$ or 1 , is produced). The relevance of these reactions to models for the biological methylation of arsenic is discussed.

Introduction

Although it has yet to be proven, methylcobalamin has been implicated in the biological methylation of many elements ${ }^{2}$ including mercury, ${ }^{3}$ arsenic, ${ }^{4,5}$ tin, ${ }^{6}$ lead, ${ }^{7}$ selenium, ${ }^{8}$ and thallium. ${ }^{9}$ As a consequence, during the past few years there has been an extensive investigation of alkyl transfer reactions between alkyl-cobalt complexes and metal electrophiles such as $\mathrm{Hg}(\mathrm{II}), \mathrm{Pt}(\mathrm{II}), \mathrm{Au}(\mathrm{I}), \mathrm{Cu}(\mathrm{II}), \mathrm{Cr}(\mathrm{II}), \mathrm{Tl}(\mathrm{III})$, $\mathrm{Pb}(\mathrm{II}), \mathrm{Cd}(\mathrm{II})$, and $\mathrm{Zn}(\mathrm{II}) \cdot{ }^{10}$ In the case of arsenic, Schrauzer and co-workers ${ }^{5}$ have reported that the arsines $\left(\mathrm{CH}_{3}\right)_{n} \mathrm{H}_{3-n} \mathrm{As}$ ($n=0-3$) are obtained by reacting methylcobaloximes with $\mathrm{As}_{2} \mathrm{O}_{3}$ in the presence of thiols (or $\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{Zn}$) as reducing agents. A very speculative mechanism for this reaction was advanced which embraced the possibility of intermediates with cobalt-arsenic σ bonds being involved.

We have recently presented evidence ${ }^{11}$ which indicates that the biological methylation of arsenic to trimethylarsine by aerobic microorganisms proceeds by a series of oxidationreduction steps involving carbonium ions (probably from S adenosylmethionine) as suggested some time ago by Challenger (reaction 1). ${ }^{12}$

$$
\begin{align*}
& \mathrm{CH}_{3}^{+}+\dot{\mathrm{A}} \dot{s}(\mathrm{III}) \rightarrow \mathrm{CH}_{3} \mathrm{As}(\mathrm{~V}) \xrightarrow{2 \mathrm{e}^{-}} \mathrm{CH}_{3} \dot{\mathrm{~A}} \dot{\mathrm{~s}}(\mathrm{III}) \tag{1}\\
& \mathrm{CH}_{3} \dot{\mathrm{~A}} \dot{\mathrm{~s}}(\mathrm{III}) \xrightarrow[\text { (b) } 2 \mathrm{e}^{-}]{\text {(a) } \mathrm{CH}_{3}^{+}}\left(\mathrm{CH}_{3}\right)_{2} \dot{\mathrm{~A}} \dot{s}(\mathrm{III}) \xrightarrow[\text { (b) } 2 \mathrm{e}^{-}]{\text {(a) } \mathrm{CH}_{3}^{+}}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{As}
\end{align*}
$$

Nevertheless the original work by McBride and Wolfe ${ }^{4}$ on cell-free extracts of Methanobacterium strain M.O.H. indicates that methylcobalamin does transfer its CH_{3} group to arsenic to give $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsH}$ (from arsenate). ${ }^{13}$ Thus the possibility exists that anaerobic methylation of arsenic could involve alkyl-cobalt intermediates.

With this in mind we have prepared some compounds with the $\mathrm{Co}-\dot{\mathrm{A}} \dot{\mathrm{s}} \mathrm{R}_{2}$ moiety and studied their properties.

Experimental Section

All reactions were carried out under a nitrogen or argon atmosphere. Infrared spectra were recorded on a Perkin-Elmer 457 spectrometer and calibrated by using polystyrene. NMR spectra were run on Varian T-60 and XL- 100 instruments. Chemical shifis are given in ppm downfield from internal $\mathrm{Me}_{4} \mathrm{Si}$. Ultraviolet and visible spectra were recorded on a Cary 17-D spectrophotometer. Gas samples were
monitored by GLC by using a Varian 1520 instrument fitted with a $6-\mathrm{ft} 5 \%$ SE 30, stainless steel column. Microanalyses were performed by Mr. Peter Borda (U.B.C.). Arsenic compounds were prepared by using methods described in the literature: $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Ascl}^{14}{ }^{14}$ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsI},{ }^{15} \mathrm{CH}_{3} \mathrm{AsCl}_{2},{ }^{15}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{AsCl},{ }^{16} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{AsCl}_{2},{ }^{16}$ $\mathrm{AsI}_{3},{ }^{17}$ and $\mathrm{AsH}_{3} .{ }^{18} \mathrm{AsCl}_{3}, \mathrm{As}_{2} \mathrm{O}_{3},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}(\mathrm{OH})$, and $\mathrm{C}_{6} \mathrm{H}_{5}-$ $\mathrm{AsO}(\mathrm{OH})_{2}$ were commercial products.

Bromo(dimethyl sulfide) cobaloxime was prepared by the method of Hill and Morallee ${ }^{19}$ by using dimethyl sulfide as the base. Bromo(4-tert-butylpyridine) cobaloxime [$\mathrm{Br}\left(4-t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right.$)$\mathrm{Co}(\mathrm{dmgH})_{2}$ where dmgH $=$ dimethylglyoximato monoanion] and $\mathrm{Br}\left[\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3} \mathrm{P}\right] \mathrm{Co}(\mathrm{dmgH})_{2}$ were prepared from the corresponding (dimethyl sulfide) cobaloxime. ${ }^{20}$

Reaction of Bromo (4-tert-butylpyridine) cobaloxime with Iododimethylarsine. $\mathrm{NaBH}_{4}(0.05 \mathrm{~g} ; 1.3 \mathrm{mmol})$ was added to a deoxygenated methanol solution (25 mL) of the cobaloxime ($0.135 \mathrm{~g} ; 0.27 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The color changed immediately from red-brown to deep blue. Acetone (5 mL) was added to remove the excess NaBH_{4}. The arsine ($0.062 \mathrm{~g} ; 0.27 \mathrm{mmol}$) in methanol (2 mL) was added dropwise producing a red-brown solution and precipitate. The reaction mixture was allowed to warm to room temperature, the precipitate was filtered, washed with water, methanol, and acetone, and dried in vacuo (yield $\sim 60 \%$ on the basis of the empirical formula given below).

Anal. Calcd for $\left(\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{AsCo} \cdot \mathrm{CH}_{3} \mathrm{OH}\right)_{x}: \mathrm{C}, 31.0 ; \mathrm{H}, 5.40$; N, 13.2. Found: C, 32.9; H, 5.35; N, 13.2.

Reaction of Bromo(tri-n-butylphosphine)cobaloxime with Iododimethylarsine, Chlorodimethylarsine, and Dichlorophenylarsine. The following general procedure was used. An excess ($5 \times$) of NaBH_{4} was first added to a deoxygenated methanol solution of the cobaloxime (0.5 mmol) at $0^{\circ} \mathrm{C}$, then acetone $(5 \mathrm{~mL})$. Slow dropwise addition of an equimolar amount of the haloarsine in methanol produced a color change from deep blue to green. The ice bath was removed and the solution stirred at room temperature (10 h) after which time the color had reverted to red-brown. The solution was concentrated ($2-3 \mathrm{~mL}$), degassed water (25 mL) was added, and the resulting red-brown solid filtcred. Recrystallization of the solid, under an argon atmosphere, from a $1: 5$ benzene-petroleum ether (bp $30-60^{\circ} \mathrm{C}$) mixture at $25^{\circ} \mathrm{C}$ gave dark red-brown crystals of $\left(\mathrm{Co}(\mathrm{dmgH})_{2}\left[\mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\right]_{2}\right)^{+} \mathrm{X}^{-}(\mathrm{X}$ $=1, \mathrm{Cl})^{2 i}$ in $35-45 \%$ yield.

Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{68} \mathrm{ColN} \mathrm{N}_{4} \mathrm{O}_{4} \mathrm{P}_{2}$: C, 46.8; $\mathrm{H}, 8.29 ; \mathrm{N}, 6.83 ; 1$, 15.5. Found: $\mathrm{C}, 46.6 ; \mathrm{H}, 8.23 ; \mathrm{N}, 6.59 ; 1,15.0$. Calcd for $\mathrm{C}_{32} \mathrm{H}_{68} \mathrm{ClCoN}_{4} \mathrm{O}_{4} \mathrm{P}_{2}$: C, $52.8 ; \mathrm{H}, 9.34 ; \mathrm{N}, 7.69$. Found: C, $52.5 ; \mathrm{H}$, 9.10; N, 7.40 .

The NMR spectrum (CDCl_{3} solution) of the iodide complex consisted of a triplet centered at $2.43\left(\mathrm{dmgH}-\mathrm{CH}_{3}, J(\mathrm{H}, \mathrm{P})=3.0 \mathrm{~Hz}\right)$ and broad multiplets centered at 1.30 and $0.90\left(\mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\right)$. The NMR
spectrum (CDCl_{3}) of the chloride complex exhibited a triplet centered at $2.33\left(\mathrm{dmgH}-\mathrm{CH}_{3}, J(\mathrm{H}, \mathrm{P})=2.5 \mathrm{~Hz}\right)$ and multiplets centered at 1.33 and $0.90\left(\mathrm{P}^{\left.\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\right) \text {. }}\right.$

Reaction of Bromo(tri- \boldsymbol{n}-butylphosphine)cobaloxime with Chloromethylphenylarsine. $\mathrm{NaBH}_{4}(0.16 \mathrm{~g} ; 4.2 \mathrm{mmol})$ was added to a redbrown degassed methanol solution (25 mL) of the cobaloxime (0.48 $\mathrm{g} ; 0.84 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. Acetone (5 mL) was added to the blue solution, followed by the slow dropwise addition of $\mathrm{Cl}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{As}(0.17$ $\mathrm{g} ; 0.84 \mathrm{mmol}$) in methanol (3 mL). The green solution was stirred at $0^{\circ} \mathrm{C}$ for 1.5 h . After stirring at room temperature for a further 6.5 h , the color had changed to red-brown. The solution was concentrated $(2-3 \mathrm{~mL})$ and degassed water (25 mL) was added. The water-insoluble oil was recrystallized from a degassed methanol-water mixture at $\sim 25^{\circ} \mathrm{C}$ affording metallic brown plates of B: yield, 0.030 g ($\sim 5 \%$).

Anal. Calcd for $\mathrm{C}_{54} \mathrm{H}_{96} \mathrm{As}_{2} \mathrm{Co}_{3} \mathrm{~N}_{8} \mathrm{O}_{10} \mathrm{P}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 45.0 ; \mathrm{H}, 6.94$; N, 7.77; As, 10.4. Found: C, 45.2; H, 7.15; N, 7.59; As, 10.1.

The ' H NMR spectrum (CDCl_{3} solution) consisted of singlets at $7.30\left(\mathrm{As}-\mathrm{C}_{6} \mathrm{H}_{5}\right)$ and $1.60\left(\mathrm{As}-\mathrm{CH}_{3}\right)$, doublets centered at 2.20 $\left(\mathrm{dmgH}-\mathrm{CH}_{3} J(\mathrm{H}, \mathrm{P})=2.6 \mathrm{~Hz}\right)$ and $1.94\left(\mathrm{dmgH}-\mathrm{CH}_{3}, J(\mathrm{H}, \mathrm{P})=2.7\right.$ H z), and broad multiplets centered at 1.28 and $\left.0.90\left(\mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)\right)_{3}\right)$. The siructure of this material B was determined by X-ray techniques as described below.
Reaction of Bromo(tri-n-butylphosphine)cobaloxime with Chlorodiphenylarsine. $\mathrm{NaBH}_{4}(0.12 \mathrm{~g} ; 3.2 \mathrm{mmol})$ was added to a red-brown degassed methanol solution (50 mL) of the cobaloxime ($0.350 \mathrm{~g} ; 0.61$ mmol) at $0^{\circ} \mathrm{C}$. Acetone (5 mL) was added to the blue solution, followed by, slowly and dropwise, a solution of $\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Cl}(0.16 \mathrm{~g}$; 0.61 mmol) in methanol (5 mL). The green solution was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 0.5 h and then at room temperature for a further 3 h . The red-brown solution was evaporated to dryness. The residue was washed with water and recrystallized from a degassed acetone-water mixture at $25^{\circ} \mathrm{C}$ affording brown crystals of the diphenylarsino analogue of B: yield, $0.032 \mathrm{~g}(\sim 10 \%)$.
Anal. Calcd for $\mathrm{C}_{64} \mathrm{H}_{100} \mathrm{As}_{2} \mathrm{Co}_{3} \mathrm{~N}_{8} \mathrm{O}_{10} \mathrm{P}_{2}: \mathrm{C}, 50.23 ; \mathrm{H}, 6.54 ; \mathrm{N}$, 7.33. Found: C, $50.28 ; \mathrm{H}, 6.60 ; \mathrm{N}, 7.10$.

The ${ }^{1} \mathrm{H}$ NMR spectrum (CDCl_{3} solution) consisted of very broad peaks.
Alkylation Reactions. These were carried out using Schlenk type apparatus. Solid $\mathrm{NaBH}_{4}(0.010 \mathrm{~g} ; 0.26 \mathrm{mmol})$ was added to a degassed methanol solution (3 mL) of $\mathrm{Br}\left[\mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\right] \mathrm{Co}(\mathrm{dmgH})_{2}(0.045$ $\mathrm{g} ; 0.08 \mathrm{mmol}$) followed by acetone (1.5 mL). A methanol solution (1 $\mathrm{mL})$ of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Asl}(0.018 \mathrm{~g} ; 0.08 \mathrm{mmol})$ was slowly added to the blue solution. Upon addition of $\mathrm{CH}_{3}!(0.16 \mathrm{mmol})$ the color changed from green to yellow-orange. A sample of the head space in the tube was found to contain $\mathrm{As}\left(\mathrm{CH}_{3}\right)_{3}$ on examination by GLC. Solvents were removed in vacuo leaving an orange solid which was identified as
 other experiment after the addition of excess $\mathrm{CH}_{3} 1(0.81 \mathrm{mmol})$ solvents were removed in vacuo leaving an oily orange solid. The water-soluble material was shown to contain $\mathrm{As}\left(\mathrm{CH}_{3}\right)_{4}$ l of known ultraviolet spectrum and melting point ($330^{\circ} \mathrm{C}$, lit. $325-326^{\circ} \mathrm{C}^{23}$). ${ }^{1} \mathrm{H}$ NMR spectrum ($\mathrm{D}_{2} \mathrm{O}$ solution) singlet 172 Hz upfield of $\mathrm{H}_{2} \mathrm{O}$. The water-insoluble material was identified as $\mathrm{CH}_{3}\left[\mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\right]$ $\mathrm{Co}(\mathrm{dmgH})_{2}$.

Reaction of Methylaquocobaloxime with Arsine. Methylaquocobaloxime ($0.434 \mathrm{~g}, 1.34 \mathrm{mmol}$), deoxygenated water (3 mL), and arsine ($0.586 \mathrm{~g}, 7.5 \mathrm{mmol}$) were allowed to mix in a sealed Carius tube. The tube was warmed to $20^{\circ} \mathrm{C}$ (from $-196^{\circ} \mathrm{C}$) and agitated in the dark for 4 days. The tube was opened and the noncondensible gas was identified as a mixture of CH_{4} and H_{2} by means of its infrared spectrum and by GLC. No condensible gases were obtained when the tube was warmed. Addition of dithioerythritol (0.2 g) to the reaction mixture made no difference to the course of the reaction.
Reaction of Arsenic Trichloride with Methylpyridinecobaloxime. Freshly distilled $\mathrm{AsCl}_{3}(72 \mu \mathrm{~L}, 0.9 \mathrm{mmol})$ was added to a degassed suspension of the cobaloxime ($0.360 \mathrm{~g} ; 0.9 \mathrm{mmol}$) in methanol (10 mL). The solution cleared, turned bright red, and later (10 min) an orange precipitate formed. The suspension was stirred for a further hour. The solvent was removed in vacuo and the orange solid identified as D recrystallized from methylene chloride-hexane as orange needles: yield, 89%.
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Cl}_{2} \mathrm{Co}: \mathrm{C}, 36.84 ; \mathrm{H}, 5.26$: $\mathrm{N}, 15.35$; $\mathrm{Cl}, 15.57$. Found: $\mathrm{C}, 36.71 ; \mathrm{H}, 5.28 ; \mathrm{N}, 15.06 ; \mathrm{Cl}, 14.98$.
The 'H NMR spectrum (CDCl_{3} solution) consisted of a broad peak centered at $10.36\left(\mathrm{dmgH}_{2}-\mathrm{OH}\right)$, multiplets centered at $8.90,8.33$,

Table I. Crystal Data

$\mathrm{C}_{54} \mathrm{H}_{100} \mathrm{As}_{2} \mathrm{Co}_{3} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{P}_{2}$	F_{w}	1442.0	
space group	$P 1$		
a	$11.77(2) \AA$	$\rho_{0}{ }^{a}$	$\rho_{\mathrm{c}}(Z=2)$
b	$13.65(2) \AA \AA$	μ	$1.39 \mathrm{~g} \mathrm{~cm}^{-3}$
c	$21.90(4) \AA$	Mo K α_{1} radiation	$18.75 \mathrm{~cm}^{-1}$
c	$96.06(8)^{\circ}$	unique reflections	2755
α	$92.80(7)^{\circ}$	reflections $I>2.3 \sigma_{i}$	1619
β	$101.10(7)^{\circ}$	final $R_{1}{ }^{b}$	0.102
γ	$3423 \AA^{3}$	final $R_{2}{ }^{c}$	0.111

${ }^{a}$ Flotation in aqueous ZnBr_{2} solution, ${ }^{b} R_{1}=\Sigma| | F_{0}\left|-\left|F_{\mathrm{c}}\right|\right| /$ $\Sigma\left|F_{\mathrm{o}}\right| \cdot{ }^{c} R_{2}=\left(\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma F_{0}^{2}\right)^{1 / 2}$.
and $7.96\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$, and singlets at $2.26\left(\mathrm{dmgH}_{2}-\mathrm{CH}_{3}\right)$ and 1.13 ($\mathrm{Co}-\mathrm{CH}_{3}$).

The identical compound was obtained by using dry CHCl_{3} or toluene as solvents.

Reaction of Methylpyridinecobaloxime with Arsenic Triiodide or Dichloromethylarsine. $\mathrm{CH}_{3} \mathrm{AsCl}_{2}(0.084 \mathrm{~g} ; 0.52 \mathrm{mmol})$ in degassed CDCl_{3} (1 mL) was added to a degassed CDCl_{3} solution (2 mL) of $\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right) \mathrm{Co}(\mathrm{dmgH})_{2}(0.200 \mathrm{~g} ; 0.52 \mathrm{mmol})$. The solution was stirred for 1 h after which time the NMR specirum revealed only starting materials. Asl_{3} reacted slowly with $\mathrm{CH}_{3}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right) \mathrm{Co}(\mathrm{dmgH})_{2}$ in THF at $20^{\circ} \mathrm{C}$ to give a solid whose NMR spectrum was identical with that of D.

X-Ray Crystallography, Very thin plates of B were obtained from methanol/water. The best formed and thickest crystals were selected under a microscope, removed from the mother liquor, and immediately transferred to Lindeman tubes (containing small amounts of the solvent) which were then sealed. Despite numerous attempts only one crystal was found which did not give a multiple diffraction pattern or show decomposition; even so the reflections were weak and not well defined. Since there seemed little possibility of finding a substantially better crystal, intensity data were collected on this one. It was recognized that the data set would be of poor quality but we were sure that solving the structure would be worthwhile in view of its chemical interest.

Cell dimensions were determined by least squares from the setting angles of 9 reflections with $2 \theta>20^{\circ}$ which were centered on a Picker FACS-1 four circle diffractometer employing monochromated Mo $K \alpha_{1}$ radiation ($T=295 \mathrm{~K}$). Crystal data are given in Table 1. A $\theta-2 \theta$ scan was used to collect intensity data. The sean rate was $2^{\circ} \mathrm{min}^{-1}$ and the scan width $(1.4+0.692 \tan \theta)^{\circ}$. Stationary-crystal station-ary-counter background counts of 20 s were taken at each side of the scan. The intensities of 2755 unique reflections with $2 \theta \leq 30^{\circ}$ were measured and of these 1619 with $l>2.3 \sigma_{l}$ (σ_{l} is the standard deviation of the intensity derived from counting statistics and a precision factor of 0.03) were regarded as observed and were used in structure solution and refinement. Data were not collected beyond $2 \theta=30^{\circ}$ as the percentage of reflections classified as "observed" decreased rapidly. Two standard reflections were measured at regular intervals to scale the data.
The structure was solved by heavy-atom procedures. Full-matrix least-squares refinement of the nonhydrogen atoms with isotropic temperature factors yielded a value of 0.124 for $R_{1}\left(=\Sigma| | F_{0} \mid-\right.$ $\left.\left|F_{\mathrm{c}}\right| / \Sigma\left|F_{\mathrm{o}}\right|\right)$. The As, Co, and P atoms were assigned anisotropic temperature factors in further refinement which gave $R_{1}=0.103$, but the most prominent features in a difference map still remained in the vicinity of the heavy atoms. The $4 \mathrm{As}-\mathrm{Co}$ and Co-P vectors are of similar length and direction so it was possible that the structure had refined to a false minimum. In order to overcome such a possibility various adjustments were made to the heavy atom coordinates, but in each case further least-squares cycles returned the atoms to their original positions. The coordinates of the nonmethyl H atoms were determined geometrically ($r_{\mathrm{C}-\mathrm{H}} 0.95 \AA, \mathrm{sp}^{2}$ or sp^{3} geometry at C atoms) and the alkyl H atoms were assigned the average temperature factor of $C(31)-C(33), C(41)-C(42)$, and $C(51)-C(53)$ and the phenyl H atoms of $\mathrm{C}(62)-\mathrm{C}(66)$. The H atom scattering contribution was included in future least squares, the parameters being recalculated after each set of cycles. The methyl H atoms were not located. Sevcral C aloms exhibited high tempcrature factors suggessing that there might be some degree of disorder in the n-butyl groups which was not resolved on account of the poor data. 1sotropic temperature factors

Table II. Final Positional and Thermal Parameters for $\mathrm{Co}\left[\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3} \mathrm{PCo}\left(\mathrm{dmg}_{2} \mathrm{H}\right) \mathrm{As}(\mathrm{O})\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right]_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}^{a, b}$

Table II (Continued)

atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
			ligand 2			
$\operatorname{Co}(1)$	$27(4)$	$37(5)$	$86(5)$	$23(4)$	$3(3)$	$4(4)$
$\operatorname{As}(1)$	$38(4)$	$66(5)$	$80(4)$	$21(3)$	$-7(3)$	$10(4)$
$\mathrm{P}(1)$	$28(9)$	$55(11)$	$76(11)$	$20(8)$	$17(8)$	$-21(9)$

${ }^{a}$ Estimated standard deviations of the least significant figures are given in parentheses here and in succeeding tables. ${ }^{b}$ The values of the thermal parameters (in \AA^{2}) are multiplied by $10^{3} . U$ is 0.108 for $\mathrm{H}(61)-\mathrm{H}(66)$ and 0.130 for the other H atoms. ${ }^{c}$ Anisotropic temperature factors in the form $\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{*} 2+\ldots+2 U_{22} k l b^{*} c^{*}\right)\right]$.
wcre retained for the O, N, and C atoms as the maximum peaks and troughs in a final difference map ($\pm 0.90-0.53 \mathrm{e}^{-} \AA^{-3} ; \sigma_{\rho}=0.15 \mathrm{e}^{-}$ \AA^{-3}) were around the As, Co and P atoms. In addition the observations/parameters ratio was low ($1619 / 360=4.5$).

Neutral scattering factors ${ }^{24}$ were used throughout and anomalous dispersion corrections were applied for As, Co, and P. ${ }^{25}$ A weighting scheme of the form $w=1 / \sigma_{F}{ }^{2}$ was employed in the final stages of refinement. In the final cycle, all shift-to-error ratios were <0.2. Final R_{1} was 0.102 .

The atomic coordinates and associated thermal parameters are listed in Table 1l. Figure 1 shows the atom labeling scheme and some of the more important bond lengths and angles.

Results and Discussion

Compounds containing arsenic σ bonded to transition metals are not well known ${ }^{26-31}$ and there is little information available about the properties of derivatives containing $\mathrm{M}-\mathrm{AsR}_{2}$ or M-AsR-moieties ($\mathrm{R}=$ alkyl or aryl). Early work ${ }^{31}$ showed that tetrakistrifluoromethyldiarsine reacts with compounds with metal-metal bonds to give for example $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ $\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{As}\left(\mathrm{CF}_{3}\right)_{2}$. More conventional routes have been developed by using metal carbonyl anions and haloarsines ${ }^{27-30}$ and the compounds $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{As}-\mathrm{M}(\mathrm{CO})_{n}\left(\mathrm{C}_{5} \mathrm{H}_{5}-\eta^{5}\right)$ (e.g., M $=\mathrm{Fe}, n=2 ; \mathrm{M}=\mathrm{Mo}, n=3$) have been found to be unexpectedly stable. This route using anions is the most obvious preparative one for cobaloxime compounds since reactions of the easily obtained powerful nucleophilic $\mathrm{Co}(\mathrm{I})$ species are very well documented. ${ }^{32}$

Thus Schrauzer and Kratel ${ }^{33}$ used this approach to obtain cobaloxime derivatives of $-\mathrm{M}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}(\mathrm{M}=\mathrm{Si}, \mathrm{Ge}, \mathrm{Sn})$ and $-\mathrm{M}^{\prime}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{M}^{\prime}=\mathrm{Sb}, \mathrm{Bi}\right)$. We have employed essentially the same procedure in our study of the reaction of haloarsines with cobaloximes. ${ }^{34}$

Reaction of iododimethylarsine with (4-tert-butylpyridine)cobaloxime(I) gave a red solid that was insoluble in a wide range of solvents. Microanalysis indicated that the formula approximates to $\left[\mathrm{Co}(\mathrm{dmgH})_{2} \mathrm{As}\left(\mathrm{CH}_{3}\right)_{2}\right] \mathrm{CH}_{3} \mathrm{OH}$. Schrauzer and Kratel ${ }^{33}$ obtained a similar substance from chlorodimethylarsine and pyridinecobaloxime(1) and postulated a similar formula in spite of equally bad analytical data. There seems little doubt that both compounds are closely related and are probably polymers composed of $-\mathrm{As} \mathrm{Me}_{2} \rightarrow \mathrm{Co}(\mathrm{dmgH})_{2}-$ units. Presumably facile displacement of the weaker pyridine bases by the arsine results in polymer formation. Such arsen-ido-bridged products are commonly encountered ${ }^{27-31}$ and the carbonyl derivative $(\mathrm{CO})_{4} \mathrm{Co}-\mathrm{As}\left(\mathrm{CH}_{3}\right)_{2}$ is apparently also unstable in this regard. ${ }^{35}$

In an attempt to block the polymerization reaction, $\operatorname{tri}-n$ butylphosphinecobaloxime(1) was used as nucleophile. Slow dropwise addition of the haloarsines $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsCl},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsI}$,

Figure 1. A formalized view of the molecule B showing the atom labeling scheme. Ligand 2 is related to ligand 1 by approximate twofold symmetry. Each atom in ligand 2 is given the same index as the corresponding atom in ligand 1 with a subscript 1 or 2 being added, when necessary, to denote the ligand number. Some averaged bond lengths (\AA) and angles (deg) are also shown.
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{AsCl}_{2}$, and $(\mathrm{R})\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{AsCl}\left(\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$ to the blue cobaloxime(I) solution produces a dark-green oxygensensitive solution which slowly ($\sim 6 \mathrm{~h}$) changes to red-brown. Microanalyses and ${ }^{1} \mathrm{H}$ NMR spectra of the red-brown products from the first three reactants indicate that they have the known structure $\mathrm{A}^{21}(\mathrm{X}=\mathrm{Cl}, \mathrm{I})$. Thus, the ${ }^{1} \mathrm{H}$ NMR spectrum of A exhibits a triplet because of spin-spin coupling of the inplane methyl groups with two equivalent phosphorus atoms in mutually trans positions.

In contrast, the reaction involving $\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{AsCl}$ ultimately gives a product B that contains arsenic. The ${ }^{1} \mathrm{H}$ NMR spectrum shows two sets of equivalent resonances in the dmgH -methyl region and a singlet in the As- CH_{3} region; however, the latter signal is sufficiently downfield to be in the $\mathrm{As}(\mathrm{V})$ region if oxygen is also bound to arsenic. ${ }^{36}$ This information was taken to indicate that B contains an $-\mathrm{As}_{5}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$. $\left(\mathrm{CH}_{3}\right)(\mathrm{O})$ moiety which has an asymmetric arsenic atom and which could give rise to two sets of ligand methyl resonances such as is found for $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right) \mathrm{Co}(\mathrm{dmgH})_{2}\left(\mathrm{CH}(\mathrm{CN})\left(\mathrm{CH}_{3}\right)^{37}\right.$ and $\mathrm{CH}_{3} \mathrm{Co}(\mathrm{dmgH})_{2} \mathrm{NH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5} .{ }^{38}$ In spite of external appearances, it proved to be very difficult to find a crystal of B suitable for X-ray analyses; however, one of very poor quality, but the best available, was eventually selected. The structure of the complex is shown in Figure 1. It does contain the anticipated $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{CH}_{3}\right) \mathrm{As}(\mathrm{O})$ group and the

Figure 2. Stereoscopic view of the $\mathrm{Co}\left[\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3} \mathrm{PCo}\left(\mathrm{dmg}_{2} \mathrm{H}\right) \mathrm{As}(\mathrm{O})(\mathrm{CH})_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right]_{2}(\mathrm{~B})$ molecule and water molecules down the approximate (noncrystallographic) twofold axis. Probability ellipsoids are shown at the 25% level. Hydrogen atoms are not included.
chiral molecule shown should have only one $\mathrm{As}-\mathrm{CH}_{3}$ resonance. It seems that the meso isomer is not formed.

Description of the Structure. A stereoscopic drawing of the molecule is shown in Figure 2. The molecule consists of two $\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right){ }_{3} \mathrm{PCo}\left(\mathrm{dmg}_{2} \mathrm{H}\right)-\mathrm{As}(\mathrm{O})\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$ units which may be considered to act as tridentate ligands bonded in a fac configuration to a central Co atom through two adjacent dmg O atoms and the arsenyl O . The molecule as a whole possesses approximate (noncrystallographic) twofold symmetry and is disymmetric. The unit cell contains a racemic mixture of these molecules.

The central Co atom, $\mathrm{Co}(2)$, has an octahedral environment with the $\mathrm{Co}-\mathrm{O}$ distances averaging $2.08 \AA$, consistent with $\mathrm{Co}(\mathrm{II}) .{ }^{39,40}$ The two water molecules are each hydrogen bonded to two of the O atoms of the coordination sphere.

Within the accuracy of this structure determination, the two independent tridentate ligands appear to be chemically equivalent. In each the $\mathrm{Co}(1)$ atom is bonded to two dmg groups; the Co and four N atoms are coplanar within $0.06 \AA$. The $\mathrm{Co}-\mathrm{N}$ bond lengths (1.84-1.96 (3) \AA) and $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ "bite" angles (79-84 (2) ${ }^{\circ}$) are comparable with the values reported for $\mathrm{Co}^{111}(\mathrm{dmgH})_{2} \mathrm{XY}$ compounds $(\sim 1.89 \AA$ and $\sim 81^{\circ}$)..$^{41-45}$ The oxime $\mathrm{O} \ldots \mathrm{O}$ intramolecular contacts in these compounds are usually $\sim 2.48 \AA$, indicating the presence of hydrogen bonding. In B the replacement of the $\mathrm{O}(12) / \mathrm{O}(22)$ H atom by Co causes $\mathrm{O}(12) \cdots \mathrm{O}(22)$ to open to 2.90 (3) \AA which in turn allows $O(16) \cdots O(26)$ to shorten to an average of $2.39 \AA$. Two other complexes have been reported where the two $\mathrm{O} \ldots \mathrm{O}$ distances are significantly different due to the breaking of an $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ contact. In $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{Co}(\mathrm{dmgH})$ $\left(\mathrm{dmgH}_{2}\right) \mathrm{Cl}(\mathrm{O} \cdots \mathrm{O}$ distances 2.43 and 2.71 (1) \AA), it was thought to arise from additional protonation ${ }^{46}$ while in $\mathrm{Co}\left(\mathrm{dmg}_{2} \mathrm{H}\right) \mathrm{py}_{2}(2.45$ and $2.92 \AA)$ it was ascribed to the loss of a proton. ${ }^{47}$ In both cases the O atoms of the long contact are involved in intermolecular hydrogen bonding.

Axially each $\mathrm{Co}(1)$ atom is bonded to an As and a P . The Co-As distance ($2.36 \AA$) is similar to previously reported values for $\mathrm{Co}^{n}-\mathrm{As}(n=0 \text { to III) })^{48}$ The $\mathrm{Co}-\mathrm{P}$ bond length averages $2.30 \AA$ and falls in the range observed for $\mathrm{Co}^{\text {III }}-\mathrm{P}$ in $\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3} \mathrm{PCO}(\mathrm{dmgH})_{2}\left(4\right.$-pyridyl) $\quad(2.342 \quad$ (1) $\AA),{ }^{42}$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PCo}(\mathrm{dmgH})_{2} \mathrm{Cl} \quad(2.327 \quad \text { (4) } \AA)^{43}$ and $(n-$ $\left.\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3} \mathrm{PCo}(\mathrm{dmgH})_{2}($ xanthinate $)(2.285$ (2) $\AA) .{ }^{44}$ The deviations from the sum of the covalent radii $(2.32 \AA)^{49}$ were attributed to trans effects. Examination of a model constructed with the observed bond lengths shows that the bonding of $\mathrm{O}(1)$ to $\mathrm{Co}(2)$ causes strain at angles $\mathrm{As}(1)-\mathrm{O}(1)-\mathrm{Co}(2)$ and $\mathrm{N}(12)-\mathrm{Co}(1)-\mathrm{As}(1)$ which is reflected in the observed averaged values of 127 and 83°, respectively. The Co-As-C and $\mathrm{Co}-\mathrm{P}-\mathrm{C}$ angles are all $>111^{\circ}$ to minimize steric interactions with the atoms of the equatorial plane.

There is some evidence for a weak π-type interaction be-
tween the phenyl ring and the adjacent dmg group. The plane of atoms $\mathrm{C}(61)-\mathrm{C}(66)$ is tilted toward the equatorial plane (As(1) is $\sim 0.18 \AA$ out of the phenyl plane) so the phenyl C atoms lie at distances of $3.2 \AA(C(61))$ to $4.0 \AA(C(64))$ from the equatorial plane and the angle between the planes is only 19.6°. The asymmetry of the As-C-C angles (As(1)-$\mathrm{C}(61)-\mathrm{C}(62)$ average $98^{\circ}, \mathrm{As}(1)-\mathrm{C}(61)-\mathrm{C}(66)$ average $\left.128^{\circ}\right)$ allows the phenyl ring to assume a more favorable orientation for the interaction than it would otherwise have. ${ }^{45}$

The n-butyl groups $\mathrm{C}(31)_{1}-\mathrm{C}(34)_{1}, \mathrm{C}(31)_{2}-\mathrm{C}(34)_{2}$, and $\mathrm{C}(51)_{1}-\mathrm{C}(54)_{1}$ have gauche conformations rather than anti, presumably due to packing considerations; the torsion angles are respectively $61(12), 59(8)$, and $39(8)^{\circ}$.

A compound analogous to B but with $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{As}(\mathrm{O})$ replacing the $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{CH}_{3}\right) \mathrm{As}(\mathrm{O})$ groups can be obtained by reacting the $\mathrm{Co}(\mathrm{I})$ complex with $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{AsCl}$. In this case the paramagnetism of the central $\mathrm{Co}(\mathrm{II})$ atom broadens the ${ }^{1} \mathrm{H}$ NMR spectrum so that no sharp resonances are observed.

Characterization and Chemistry of the "Green Solutions". We believe that the green solutions initially observed when the cobaloxime(I) reacts with the haloarsines are due to the presence of the previously unknown air-sensitive $\mathrm{Co}-\mathrm{As}$ σ-bonded complexes $\mathrm{C}\left(\mathrm{R}^{\prime}=\mathrm{R}^{\prime \prime}=\mathrm{CH}_{3} ; \mathrm{R}^{\prime}=\mathrm{R}^{\prime \prime}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{\prime}\right.$ $\left.=\mathrm{CH}_{3}, \mathrm{R}^{\prime \prime}=\mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{\prime \prime}=\mathrm{Cl}\right)$. The isolation of complex B (Figure 1) gives strong support to this since it can

be regarded as a decomposition product of C which is formed after or during oxidation.

Figure 3 shows the visible spectrum of $\mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3} \mathrm{Co}^{1}(\mathrm{dmgH})_{2}$ and the reaction product which we formulate as $\mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3} \mathrm{Co}(\mathrm{dmgH})_{2} \mathrm{As}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{C}\left(\mathrm{R}^{\prime}=\mathrm{R}^{\prime \prime}=\right.$ CH_{3}). Clearly a new species has been formed. The spectrum of the $\mathrm{Co}(\mathrm{I})$ species is identical with that reported by Schrauzer and co-workers: ${ }^{50}$ however, that of C is not typical of a Co (III) cobaloxime. The $\mathrm{RCo}(\mathrm{dmgH})_{2} \mathrm{~B}$ derivatives normally have $\lambda_{\text {mix }}$ in the range $410-450 \mathrm{~nm}$. Only $\mathrm{HCo}(\mathrm{dmgH})_{2} \mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}$ is reported to have a band at longer wavelengths ($\lambda_{\text {max }} 615$ $\mathrm{nm}){ }^{51}$ The NMR spectrum of $\mathrm{C}\left(\mathrm{R}^{\prime}=\mathrm{R}^{\prime \prime}=\mathrm{CH}_{3}\right)$ is also similar to that of the hydride ${ }^{5!}$ in that the resonance associated with the equatorial ligand is at much higher field than usual indicating a build up of electron density on the $\mathrm{Co}(\mathrm{dmgH})_{2} \mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}$ moiety. ${ }^{52}$ This ${ }^{1} \mathrm{H}$ spectrum of C broadens as the temperature is lowered. The ${ }^{31} \mathrm{P}$ NMR spectrum of the same species at $35^{\circ} \mathrm{C}$ shows one broader than usual
signal. These features are probably due to a base-on-base-off equilibrium. ${ }^{32}$

The ESR spectrum of solutions of $\mathrm{C}\left(\mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{\prime \prime}=\right.$ CH_{3}) quenched at 77 K shows the presence of base-on $\mathrm{Co}(\mathrm{II})$ and another paramagnetic species which is probably $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{CH}_{3}\right)$ As. Little is known about the spectra of either species ${ }^{53,54}$ so this interesting result is being actively investigated.

Reactions of cobalamins and cobaloximes are very dependent on the electron density at cobalt and the attacking reagent. For example, the Co (II) derivative $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NCo}(\mathrm{dmgH})_{2}$ is alkylated at the periphery (reaction 2 a) rather than at cobalt as might have been expected from reaction $2 b^{55}$

and even the ligand substitution pattern of Co (III) cobalamins is altered by changes in the axial ligands. ${ }^{55}$ Thus it is possible that the chemistry of C is dependent on the nature of R^{\prime} and $\mathrm{R}^{\prime \prime}$.

A can be envisaged as being formed by a redistribution reaction illustrated in reaction 3

$$
\begin{align*}
2 \mathrm{R}_{3} \mathrm{PCo}(\mathrm{dmgH})_{2} \mathrm{AsR}^{\prime} \mathrm{R}^{\prime \prime} \rightarrow & {\left[\mathrm{R}_{3} \mathrm{PCo}(\mathrm{dmgH})_{2} \mathrm{PR}_{3}\right]^{+} } \\
+ & {\left[\mathrm{R}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{AsCo}(\mathrm{dmgH})_{2} \mathrm{AsR}^{\prime} \mathrm{R}^{\prime \prime}\right]^{-} } \tag{3}
\end{align*}
$$

where the anionic species is unstable. This exchange could occur via a base-on \leftrightharpoons base-off reaction. ${ }^{32}$ The cationic species A are not formed when $\mathrm{R}^{\prime}=\mathrm{CH}_{3}$ or $\mathrm{C}_{6} \mathrm{H}_{5}$ and $\mathrm{R}^{\prime \prime}=\mathrm{C}_{6} \mathrm{H}_{5}$, and in this case it seems that C is more stable in solution and does not undergo reaction 3. Slow oxidation results in production of the $\mathrm{Co}-\mathrm{As}\left(\mathrm{R}^{\prime}\right)\left(\mathrm{R}^{\prime \prime}\right)(\mathrm{O})$ compound which, although unstable itself is stabilized by its decomposition product, free $\mathrm{Co}(\mathrm{II})$, to produce B .

Further evidence for the formulation of $\mathrm{C}\left(\mathrm{R}^{\prime}=\mathrm{R}^{\prime \prime}=\mathrm{CH}_{3}\right)$ is provided by its reactions with sources of methyl carbonium ion and carbanion. Thus the interaction with 2 equiv of $\mathrm{CH}_{3} \mathrm{I}$ gives $\mathrm{As}\left(\mathrm{CH}_{3}\right)_{3}$ (identified by GLC and mass spectroscopy) and $\mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3} \mathrm{Co}(\mathrm{dmgH})_{2} \mathrm{CH}_{3}$. In the presence of excess $\mathrm{CH}_{3} \mathrm{I}, \mathrm{As}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{I}$ is produced.

It is surprising to find both arsenic and cobalt alkylation in this essentially quantitative reaction. ${ }^{58}$

Although it is not unusual for $\mathrm{CH}_{3} \mathrm{I}$ to cleave As-M bonds (eq 4) ${ }^{59}$

$$
\begin{align*}
&\left(\mathrm{CH}_{3}\right)_{2} \mathrm{As}-\mathrm{As}\left(\mathrm{CH}_{3}\right)_{2}+2 \underset{\rightarrow}{ } \mathrm{CH}_{3} \mathrm{I} \\
&\left(\mathrm{CH}_{3}\right)_{4} \mathrm{AsI}+\mathrm{IAs}\left(\mathrm{CH}_{3}\right)_{2} \tag{4}
\end{align*}
$$

The results of Malisch and co-workers ${ }^{27-29}$ indicate that, given the choice, $\mathrm{CH}_{3} \mathrm{I}$ will attack the arsenic nucleophile (eq 5)

$$
\begin{align*}
&\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{3} \mathrm{As}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{CH}_{3} \mathrm{I} \\
& \rightarrow\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{3}+\mathrm{As}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{I}^{-} \tag{5}
\end{align*}
$$

and subsequent loss of trimethylarsine from such an intermediate in the present case should lead to the formation of $\mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3} \mathrm{Co}(\mathrm{dmgH})_{2} \mathrm{I}$, but this compound is not detected. Perhaps it is the buildup of charge on the cobalt atom of $C\left(R^{\prime}\right.$ $=\mathrm{R}^{\prime \prime}=\mathrm{CH}_{3}$) as seen in the ${ }^{1} \mathrm{H}$ NMR spectrum described above which renders this atom susceptible to electrophilic attack. But in view of the ESR results for $\mathrm{C}\left(\mathrm{R}^{\prime}=\mathrm{CH}_{3}, \mathrm{R}^{\prime \prime}=\right.$

Figure 3. Absorption spectrum of tri- n-butylphosphinecobaloxime(I) (---) treated with iododimethylarsine (-).
$\mathrm{C}_{6} \mathrm{H}_{5}$) it is also conceivable that homolytic fission of the $\mathrm{Co}-\mathrm{As}$ bond occurs to give $\mathrm{Co}(\mathrm{II}) .{ }^{58}$ This could give the $\mathrm{Co}^{111}-\mathrm{CH}_{3}$ species via a reaction like that shown in eq $2 b$ but the other products should include $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsI} .{ }^{59}$

Similarly methyl(pyridine) cobaloxime(III), a potential source of CH_{3}^{-}, reacts with C to give $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{As}$. Thus again the possibility of free radical reactions must be considered. ${ }^{62}$

Models for Biological Alkylation. In a typical experiment described by Schrauzer and co-workers ${ }^{5,61} \mathrm{CH}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)$ $\mathrm{Co}(\mathrm{dmgH})_{2}, \mathrm{As}_{2} \mathrm{O}_{3}$, and dithioerythritol (DTE) reacted to give low yields of $\mathrm{CH}_{4}(109 \mu \mathrm{~mol}), \mathrm{CH}_{3} \mathrm{AsH}_{2}(134 \mu \mathrm{~mol})$, $\mathrm{CH}_{3} \mathrm{AsH}_{2}(2 \mu \mathrm{~mol})$, and $\mathrm{AsH}_{3}(290 \mu \mathrm{~mol})$. Similar results were reported if $\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{Zn}$ replaced the DTE as reductant. In our hands we have found that methylarsines are produced, although in variable and concentration-dependent amounts. At low concentrations, the major volatile product is $\mathrm{CH}_{4} ; \mathrm{AsH}_{3}$ is not observed. Our results indicate that it is unlikely that AsH_{3} would be stable in the presence of a methylcobaloxime since the two react to form methane very readily. It is reported that in the absence of reducing agent methylcobaloximes do not react with arsenate or arsenite. ${ }^{5}$ The present results show that methyl transfer from cobaloximes to arsenic via electrophilic attack by arsenic halides does not readily occur since $\mathrm{AsCl}_{3}, \mathrm{AsI}_{3}$, and $\mathrm{CH}_{3} \mathrm{AsCl}_{2}$ fail to react with $\mathrm{CH}_{3}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right) \mathrm{Co}(\mathrm{dmgH})_{2}$ to give CH_{3} - As species.

The initial investigation of the reaction of this same cobaloxime with AsCl_{3} in $\mathrm{CH}_{3} \mathrm{OH}$ solution indicated a successful transfer since a shift of the NMR signal associated with the $\mathrm{Co}-\mathrm{CH}_{3}$ moiety was observed. However, the product, in high yield, seems to be the cationic derivative $\mathrm{D}(\mathrm{X}=\mathrm{Cl})$. It is easy to envisage that D is formed by attack of HCl , produced by

solvolysis of the AsCl_{3}, on the cobaloxime, but this generally results in monoprotonation. ${ }^{63}$ Thus 3 M HCl in $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}$ monoprotonates $\mathrm{R}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Co}(\mathrm{dmgH})_{2}(\mathrm{R}=$ alkyl $)$. Furthermore even when dry toluene is used as solvent the diprotonated product $\mathrm{D}(\mathrm{X}=\mathrm{Cl})$ is isolated in high yield from the reaction of AsCl_{3} and $\mathrm{CH}_{3}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right) \mathrm{Co}(\mathrm{dmgH})_{2}$. When AsI_{3} is used to interact with the same cobaloxime, a similar complex D (X $=\mathrm{I}$) is slowly formed in methanol and THF. Since AsI_{3} is generally regarded as being stable to hydrolysis, it is unlikely to be the direct source of HI for protonation. Thus these reactions are not as simple as they seem at first sight.

The results with solutions containing C indicate that compounds containing $\mathrm{Co}-\mathrm{As}$ bonds can be alkylated by $\mathrm{Co}^{\text {III }}-\mathrm{R}$ species. Hence such compounds could well be intermediates in model alkyl transfer reactions. ${ }^{5}$ They may also be involved in arsine production as suggested ${ }^{5}$ but we are unable to comment on this aspect at the moment.

We are continuing to investigate the chemistry of these and related complexes with $\mathrm{Co}-\mathrm{AsR}_{2}$ moieties.

Acknowledgments. This paper is a contribution from the Bioinorganic Chemistry Group, supported in part by operating and negotiated development grants from the National Research Council of Canada. We thank A. Brose for some experimental assistance and Dr. R. C. Thompson for determining the magnetic moment of B.

Supplementary Material Available: A listing of structure factor a mplitudes (16 pages). Ordering information is given on any current masthead page.

References and Notes

(1) (a) University of British Columbla. (b) Simon Fraser University. (c) University of Saskatchewan, Saskatoon.
(2) W. P. Ridley, L. J. Dizikes, and J. M. Wood, Science, 197, 329 (1977).
(3) J. M. Wood, Science, 183, 1049 (1974).
(4) B. C. McBride and R. S. Wolfe, Biochemistry, 10, 4312 (1971).
(5) G. N. Schrauzer, J. A. Seck, R. J. Holland, T. M. Beckham, E. M. Rubin, and J. W. Sibert, Bioinorg. Chem., 2, 93 (1972).
(6) L. J. Dizikes, W. P. Ridley, and J. M. Wood, J. Am. Chem. Soc., 100, 1010 (1978).
(7) U. Schmidt and F. Huber, Nature (London), 259, 157 (1976).
(8) Y. K. Chau, P. T. S. Wong, B. A. Silverberg, P. L. Luxon, and G. A. Bengert, Science, 192, 1130 (1976).
(9) F. Huber and H. Kirchmann, inorg. Chim. Acta, 29, L249 (1978).
(10) (a) W. M. Scovell, J. Am. Chem. Soc., 96, 3451 (1974); (b) P. J. Craig and S. F. Morton, J. Organomet. Chem., 145, 79 (1978); (c) G. Agnes, S. Bendle, H. A. O. Hill, F. R. Williams, and R. J. P. Williams, J. Chem. Soc., Chem. Commun., 850 (1971); (d) J. H. Espenson, W. R. Bushey, and M. E. Chmielewski, Inorg. Chem., 14, 1302 (1975); (e) P. Abley, E. R. Dockal, and J. Halpern, J. Am. Chem. Soc., 95, 3166 (1973); (f) J. H. Espenson and T. D. Sellers, Ibid., 96, 94 (1974); (g) S. Tauzer, R. Dreos, G. Costa, and M. Green, J. Organomet. Chem., 81, 107 (1974); (h) M. W. Witman and J. H. Weber, Inorg. Chem., 15, 2375 (1976); 16, 2512 (1977); (i) V. C. W. Chu and D. W. Gruenwedel, Bioinorg. Chem., 7, 169 (1977).
(11) W. R. Cullen, C. L. Froese, A. Lui, B. C. McBride, D. J. Patmore, and M. Reimer, J. Organomet. Chem., 139, 61 (1977).
(12) F. Challenger, Adv. Enzymol., 12, 429 (1951).
(13) It has been pointed out by C. D. Taylor and R. S. Wolfe, J. Biol. Chem., 249, 4886 (1973), that 'it is not established that methylcobalamin is involved as a natural carrier in hydrogen-grown Methanobacterium".
(14) W. Steinkkopf and W. Mieg, Ber., 53B, 1013 (1920).
(15) A. E. Goddard, "A Text-Book of Inorganic Chemistry", Vol. XI, Part II, Charles Griffin \& Co., London, 1930.
(16) E. J. Cragoe, R. J. Andres, R. F. Coles, B. Elpern, J. F. Morgan, and C. S. Hamilton, J. Am. Chem. Soc., 69, 925 (1947).
(17) G. Brauer, Ed., 'Handbook of Preparative Inorganic Chemistry', Vol. I, Academic Press, London, 1963, p 598.
(18) W. L. Jolly and J. E. Drake, Inorg. Synth., 7,34 (1963).
(19) H. A. O. Hill and K. G. Morallee, J. Chem. Soc. A, 554 (1969).
(20) R. B. Silverman, Ph.D. Thesis, Harvard University, 1974, pp 180, 181.
(21) C. W. Smith, G. W. Van Loon, and M. C. Baird, Can. J. Chem., 54, 1875 (1976).
(22) G. N. Schrauzer and R. J. Windgassen, J. Am. Chem. Soc., 88, 3738 (1966).
(23) R. Armstrong, N. A. Gibson, J. W. Hosking, and D. C. Weatherburn, Aust. J. Chem., 20, 2771 (1967).
(24) ''International Tables for X-ray Crystallography', Vol. IV, Kynoch Press, Birmingham, England, 1974; R. S. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 42, 3175 (1965).
(25) D. T. Cromer and D. Liberman, J. Chem. Phys., 53, 1891 (1970).
(26) W. R. Cullen, D. J. Patmore, and J. R. Sams, Inorg. Chem. 12, 867 (1973), and references therein.
(27) W. Malisch, H. Rossner, K. Keller, and R. Janta, J. Organomet. Chem., 133, C21 (1977).
(28) P. Panster and W. Malisch, Chem. Ber., 109, 3842 (1976)
(29) W. Malisch and M. Kuhn, Angew. Chem., Int. Ed. Engl. 13, 84 (1974)
(30) R. Mueller and H. Vahrenkamp, Chem. Ber., 110, 3910 (1977).
(31) W. R. Cullen and R. G. Hayter, J. Am. Chem. Soc., 86, 1030 (1964).
(32) D. Dodd and M. D. Johnson, J. Organomet. Chem., 52, 1 (1973).
(33) G. N. Schrauzer and G. Kratel, Chem. Ber., 102, 2392 (1969).
(34) Prior to haloarsine addition, acetone was added to remove the excess borohydride thus preventing reduction of the haloarsine.
(35) Y. L. Baay and A. G. McDairmid, Inorg. Nucl. Chem. Lett, 3, 159 (1967).
(36) T. Antonio, A. K. Chopra, W. R. Cullen, and D. H. Dolphin, J. Inorg. Nucl. Chem., 41, 2221 (1979).
(37) M. Naumberg, K. N. V. Duiong, F. Gaudemer, and A. Gaudemer, C.R. Acad. Sci., Ser. C, 270, 1301 (1970).
(38) A. Gaudemer, F. Gaudemer, and L. Diep, Bull. Soc. Chim. Fr., 884 (1972).
(39) LJ. Manojlavić-Muir and K. W. Muir, "Molecular Siructure by Diffraction Methods', Vol. 3, The Chemical Society, London, 1975, Chapter 11.
(40) The magnetic moment of $\mathrm{B}, \mu_{\mathrm{ell}}=4.99 \mu_{\mathrm{B}}$, is typical of high spin Co (II) and indicates that the spin density is localized on the central cobalt atom.
(41) (a) P. G. Lenhert, Chem. Commun., 980 (1967); (b) A. Chiaroni and C. Pascard-Billy, Bull. Soc. Chim. Fr., Part 2, 781 (1973); (c) V. Ohashi, Y. Sasada, Y. Tashiro, Y. Ohgo, S. Takeuchi, and J. Yoshimura, Bull. Chem. Soc. Jpn., 46, 2589 (1973); (d) D. L. McFadden and A. T. McPhail, J. Chem. Soc., Dalton Trans., 363 (1974); D. Ginderow, Acta Crystallogr., Sect. B, 31, 1092 (1975); (e) D. A. Stotter, G. M. Sheldrick, and R. Taylor, J. Chem. Soc., Datton Trans., 2124 (1975); (f) L. P. Battaglia, A. B. Corradi, C. G. Palmieri, M. Nardelli, and M. E. V. Tani, Acta Crystallogr., Sect. B, 30, 1114 (1974); (g) M. M. Botoshanskii, Yu. A. Simonov, T. I. Malinovskii, A. V. Ablov, and O. A. Bologa, Dokl. Akad. Nauk SSSR, 225, 323 (1975); (h) A. Bigotto, E. Zangrando, and L. Randaccio, J. Chem. Soc., Dalton Trans., 96 (1976); (i) D. Dodd, M. D. Johnson, I. P. Steeples, and E. D. McKenzie, J. Am. Chem. Soc., 98, 6399 (1976); (j) Y. Ohashi and Y. Sasada, Bull. Chem. Soc. Jpn., 50, 1710 (1977); (k) Y. Ohashi and Y. Sasada, ibid., 50, 2863 (1977); (I) W. Pannhorst, Acta Crystallog., Sect. B, 33, 2384 (1977).
(42) W. W. Adams and P. G. Lenhert, Acta Crystallogr., Sect. B, 29, 2412 (1973).
(43) S. Brückner and L. Randaccio, J. Chem. Soc., Dalton Trans., 1017 (1974).
(44) L. G. Marzilli, L. A. Epps, T. Sorrell, and T. J. Kistenmacher, J. Am. Chem. Soc., 97, 3351 (1975).
(45) G. J. Paleník, D. A. Sullivan, and D. V. Naik, J. Am. Chem. Soc., 98, 1177 (1976).
(46) A. L. Crumbliss, J. T. Bowman, P. L. Gaus, and A. T. McPhail, J. Chem. Soc., Chem. Commun., 415 (1973).
(47) A. V. Ablov, A. A. Dvorkin, Yu. A. Simonov, O. A. Bologa, and T. I. Malinovskii, Dokl. Akad. Nauk SSSR, 217, 89(1974). This paper reports the structure of $\left[\mathrm{Co}^{1 \mathrm{ll}}(\mathrm{dmgH})_{2} \mathrm{py}_{2}\right]^{+} \mathrm{OH}^{-} \cdot 2\left[\mathrm{Co}^{\text {lli }}\left(\mathrm{dmg}_{2} \mathrm{H}\right) \mathrm{py}_{2}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$. The cation is centrosymmetric with a long $0 \cdots O$ contact of $2.64 \AA$. The Co-Noxime bonds are unusually long in both molecular species (mean value 1.94 (2) A).
(48) (a) P. J. Pauling, D. W. Porter, and G. B. Robertson, J. Chem. Soc. A, 2728 (1970); (b) W. Harrison and J. Trotter, ibid., 1607 (1971); (c) F. W. B. Einstein and R. D. G. Jones, Inorg. Chem., 11, 395 (1972); (d) F. W. B. Einstein and R. D. G. Jones, J. Chem. Soc., Dalton Trans., 2568 (1972); (e) P. K. Bernstein, G. A. Rodley, R. Marsh, and H. B. Gray, Inorg. Chem., 11, 3040 (1972); (f) J. H. Enemark, R. D. Feltham, J. Riker-Nappier, and K. F. Bizot, ibid., 14, 624 (1975); (g) P. D. Dapporto, S. Midollini, and L. Sacconi, ibid., 14, 1643 (1975).
(49) L. Pauling, "The Nature of the Chemical Bond', Cornell University Press, Ithaca, New York, 1960.
(50) G. N. Schrauzer, R. J. Windgassen, and J. Kohnle, Chem. Ber., 98, 3324 (1965).
(51) G. N. Schrauzer and R. J. Holland, J. Am. Chem. Soc., 93, 1505 (1971).
(52) The dmg- CH_{3} resonance is underneath those of $\mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}(0.95$ and 1.37 ppm). The $\mathrm{As}-\mathrm{CH}_{3}$ resonance lies outside the normal range at 2.37 ppm again indicating considerable charge transfer to cobalt.
(53) C. Giannotti and J. R. Bolton, J. Organomet. Chem., 110, 383(1976), and references therein.
(54) J. R. Preer, F.-D. Tsang, and H. B. Gray, J. Am. Chem. Soc., 94, 1875 (1972).
(55) R. B, Silverman and D. Dolphin, Can. J. Chem., 54, 1425 (1976).
(56) No other arsenic or cobalt derivative was detected in the ${ }^{1}$ H NMR spectrum of the reaction mixture.
(57) W. R. Cullen, Can. J. Chem., 38, 439 (1960), and references therein.
(58) J. M. Pratt, 'Inorganic Chemistry of Vitamin B ${ }_{12}$ ", Academic Press, New York, 1972, pp 233-235.
(59) $\mathrm{Co}(\mathrm{II})$ species react with $\mathrm{CH}_{3} \mathrm{I}$ to give $\mathrm{Co}^{\prime \prime \prime}-\mathrm{CH}_{3}$, but not $\mathrm{Co}^{\prime \prime \prime}-\mathrm{I}$. The mechanism is not established. ${ }^{58}$
(60) Homolytic cleavage of cobalt-carbon bonds on free radical attack has been postulated as being the key step in transfer of a methyl group from methylcobalamin to a thiol, coenzyme M. J. M. Wood in "Blological Aspects of Inorganic Chemistry"', A. W. Addison, W. R. Cullen, D. Dolphin, and B. R. James, Eds., Wiley-Interscience, New York, 1977, p 283. See also: L. J. Dizikes, W. P. Ridley, and J. M. Wood, J. Am. Chem. Soc., 100, 1010 (1978).
(61) Note that the quantity of reagents used was given in the original thesis ${ }^{62}$ as 2.7 mmol of each in 3 mL of water. This appears to have been misquoted in the subsequent publication. ${ }^{5}$
(62) J. A. Seck, Ph.D. Thesis, University of California, San Diego, Calif., 1973.
(63) A. L. Crumbliss and P. L. Gaus, Inorg. Chem., 14, 486 (1975).

